Knowledge-enhanced document embeddings for text classification
نویسندگان
چکیده
منابع مشابه
Word Embeddings for Multi-label Document Classification
In this paper, we analyze and evaluate word embeddings for representation of longer texts in the multi-label document classification scenario. The embeddings are used in three convolutional neural network topologies. The experiments are realized on the Czech ČTK and English Reuters-21578 standard corpora. We compare the results of word2vec static and trainable embeddings with randomly initializ...
متن کاملBag-of-Embeddings for Text Classification
Words are central to text classification. It has been shown that simple Naive Bayes models with word and bigram features can give highly competitive accuracies when compared to more sophisticated models with part-of-speech, syntax and semantic features. Embeddings offer distributional features about words. We study a conceptually simple classification model by exploiting multiprototype word emb...
متن کاملFusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification
Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words (GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce ...
متن کاملKnowledge Discovery for Document Classification
We report on extensive experiments using rule-based induction methods for document classification. The goal is to automatically discover patterns in document classifications, potentially surpassing humans who currently read and classify these documents. By using a decision rule model, we induce results in a form compatible with expensive human engineered systems that have recently demonstrated ...
متن کاملMultivariate Gaussian Document Representation from Word Embeddings for Text Categorization
Recently, there has been a lot of activity in learning distributed representations of words in vector spaces. Although there are models capable of learning high-quality distributed representations of words, how to generate vector representations of the same quality for phrases or documents still remains a challenge. In this paper, we propose to model each document as a multivariate Gaussian dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2019
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2018.10.026